Home work #7

Ch 6: 6.3-6.4

Fri, 02/04/05

Ch 7: 7.1

<u>Ch. 6</u>

Q17:

It is possible for a system may to have a potential energy due to gravity PE = mgh.

Q22:

- a) Potential energy due to gravity PE = mgh because h is increased.
- b) At the lowest point because all potential energy PE = mgh is transformed into kinetic energy $PE = \frac{1}{2} mv^2$.
- c) Potential energy PE = mgh is greater at the highest point where h is greater.

Q29:

Yes. The total energy (potential energy PE = mgh plus energy due to push KE = $\frac{1}{2}$ mv²) of the sled may allow it to cross a hump of the hill even higher than the first hump.

E12:

a)
$$KE = \frac{1}{2} mv^2 = \frac{1}{2} (0.2 \text{ kg}) (5 \text{ m/s})^2 = \frac{1}{2} (0.2 \text{ kg}) (25 \text{ m}^2/\text{s}^2) = 2.5 \text{ J}$$

b)
$$KE = PE = 2.5 \text{ J}$$
, because $PE = mgh$, $h = PE/mg = (2.5 \text{ J})/(0.2 \text{ kg}) (10 \text{ m/s}^2) = (2.5 \text{ J})/(2 \text{ kg} \cdot \text{m/s}^2) = 1.25 \text{ m}$

E14:

a)
$$PE = mgh = (50 \text{ kg})(10 \text{ m/s}^2)(15 \text{ m}) = 7500 \text{ (or J)}$$

b) Total
$$PE = (7500 J) + (1600 J) = 9100 J$$

c)
$$KE = 9100 J$$

Ch. 7

Q3:

Yes. The momentum is p = mv, so if a baseball will have larger velocity, its momentum can be larger as a much more massive bowling ball.

E5:

Impulse =
$$F\Delta t = \Delta p = m\Delta v = p_f - p_i = 0$$
 - $mv = 0 - (0.12 \text{ kg}) (40 \text{ m/s}) = -4.8 \text{ kg} \cdot \text{m/s}$

E6:

- a) Impulse = change in momentum = $9 \text{ kg} \cdot \text{m/s}$
- b) $Impulse = F\Delta t$, hence $F = impulse/\Delta t = (9 \text{ kg·m/s})/(0.15 \text{ s}) = 60 \text{ kg·m/s}^2$ or N

CP4a:

a)
$$\Delta p = p_f - p_i = 0$$
 - $mv = 0$ - (90 kg) (18 m/s) = -1620 kg·m/s

b) The impulse is equal to the change of momentum. Hence, it is require the impulse of -1620 kg·m/s